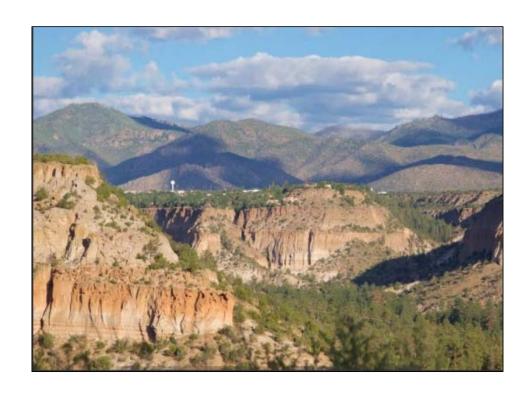


Radioanalytical Detection Status in Environmental Samples

National Environmental Monitoring Conference


August 2-5, 2021 Bellevue, WA

Dr. Sean Sandborgh¹, Dr. John Garrett¹, **Corey White¹**, Jen Patureau¹, Paul Mark², Rachel Cowan², Dr. Stanislaw Marczak³

¹Newport News Nuclear BWXT-Los Alamos, LLC ²Adelante Consulting, Inc. ³Triad National Security, LLC

Outline

- 1. Introduction
- 2. Definitions
- 3. History and Logic
- 4. Statistics and Data
- 5. Path Forward

Introduction

- Newport News Nuclear BWXT-Los Alamos, LLC (N3B)
 - Owned by Newport News Nuclear, a division of Huntington Ingalls Industries, and BWX Technologies.
 - Manages the Los Alamos Legacy Cleanup Contract for the U.S.
 Department of Energy (DOE), Office of Environmental Management's Los Alamos Field Office.

Introduction

- N3B's primary responsibility is to characterize, manage, and clean up legacy waste at Los Alamos National Laboratory (LANL).
 - Legacy waste:
 - Generated before 1999.
 - Includes radioactive material from the Manhattan Project and beyond.

 Some remediated areas will be turned over to Los Alamos County for industrial, commercial, or residential use

Introduction

- 2018 New contract at LANL for the clean up of legacy waste
- Assessment of the process for data review leads to questions about detection status of low-level radionuclides
- Review of national and international standards reveals that the process was out of line with industry standards
- Reconfiguration of database automated data review module provides opportunities for improvement

- Decision Level (DL) or Critical Level (L_c)
 - The minimum measured analyte quantity or concentration (*a posteriori* result) required to give a stated confidence (generally 95%) that a positive amount of the analyte is present.¹
 - Expected to have a 5% chance for a false positive (probability of erroneously concluding a radionuclide is detected in a blank sample)¹
 - Type α error
 - Similar to Method Detection Limit (MDL) used in standard chemistry

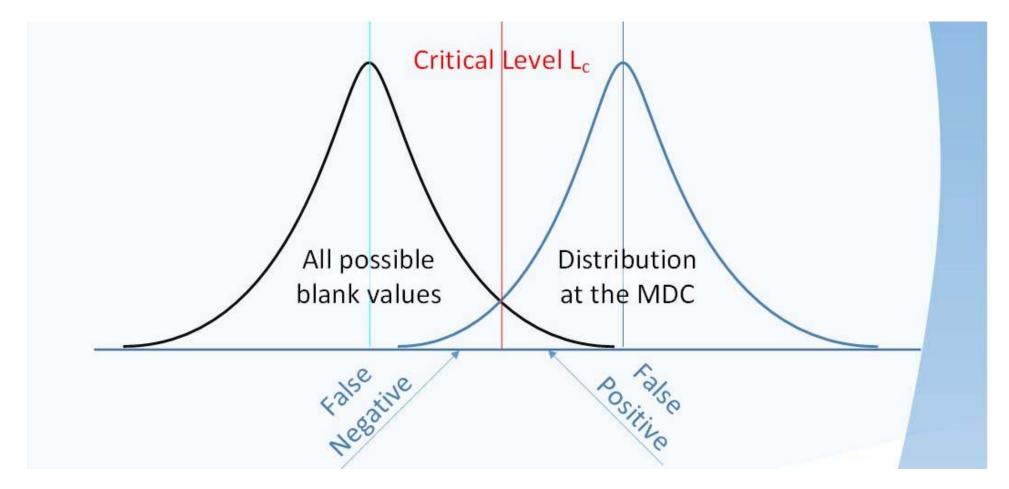
¹ ANSI/ANS-41.5-2012 (R2018), American National Standard Verification and Validation of Radiological Data for Use in Waste Management and Environmental Remediation

7

• MDL

 The minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results.²

² EPA 821-R16-006, *Definition and Procedure for the Determination of the Method Detection Limit,* Revision 2



• Minimum Detectable Concentration (MDC)

- The minimum quantity or concentration of a radionuclide required (*a priori*) to give a stated confidence (generally 95%) that the measurement result will be above the DL (detected).¹
- A sample spiked at the MDC is expected to have a 5% chance of a false negative (a sample spiked at the MDC will give a result below the critical level 5% of the time).
 - Type β error

¹ ANSI/ANS-41.5-2012 (R2018), American National Standard Verification and Validation of Radiological Data for Use in Waste Management and Environmental Remediation

What is a radionuclide detect?

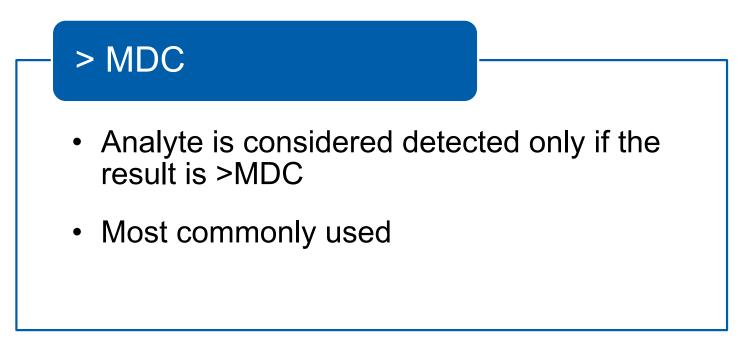
- ANSI/ANS-41.5-2012: Verification And Validation Of Radiological Data For Use In Waste Management And Environmental Remediation
 - 4.7, Detectability Each analyte's detection status shall be evaluated during the compliance verification and validation process. An analyte shall be considered as positively detected if the result is above the sample-specific Decision Level (DL) or Critical Level (Lc).

What is a radionuclide detect?

- NUREG-1576 EPA 402-B-04-001A NTIS PB2004-105421: Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP):
 - An analyte detection decision should be made by comparing the gross signal, net signal, or measured analyte concentration to its corresponding critical value.
 - A measurement result should never be compared to the minimum detectable value to make a detection decision.

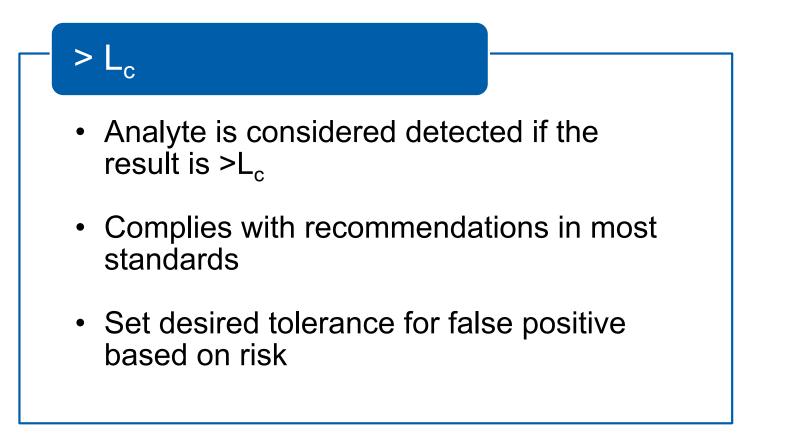
Considerations

- How low do you need to go?
- What are the action levels?
- What are the consequences of a false positive?
- What are the consequences of a false negative?
- How much risk are you willing to accept?


These questions must be answered during development of project-specific data quality objectives.

DOE Benchmarking

 Various methods of determining a detected result are used across the DOE complex


DOE Benchmarking

> MDC and > $x\sigma$ TPU

- Analyte must be > than the MDC, and > than a specified σ total propagated uncertainty (TPU) level to be considered a detected result.
- If either criteria is not met, the result is considered not detected
- Fewest detects reported

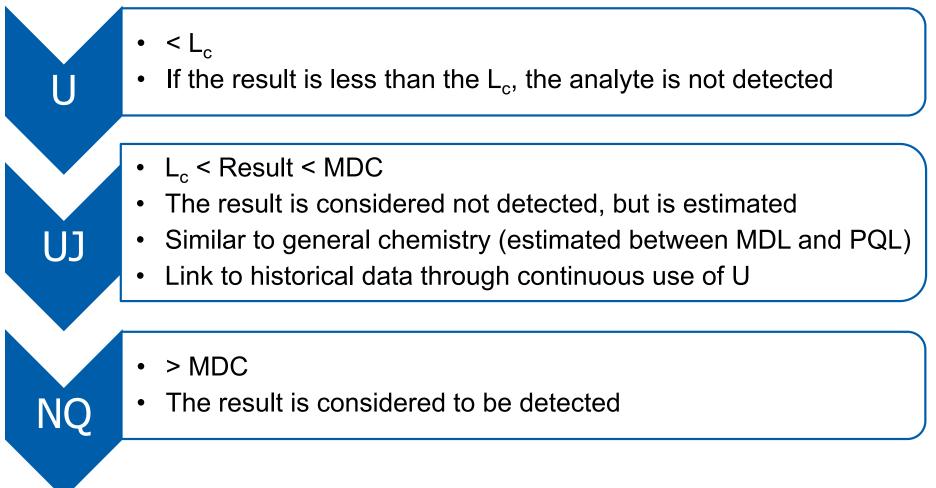
DOE Benchmarking

Historical Detection Status Identification at LANL

Historical LANL Detection Criteria

- Result must be > MDC, and >3σ TPU
- Very few low-level
 detects reported

2014 Changes


- Dropped the 3σ TPU criteria
- Result must be > MDC
- Aligns with most DOE sites

2021 Changes

- Hybrid Approach
- Incorporate L_c
 - Comply with national and international standards and guidance documents
 - Maintain historical link

Validation Qualifiers for Detection Status

New Process

Laboratory reports results <MDC with "U" lab qualifier

> Laboratory loads electronic data deliverable (EDD) in to N3B database hosted by Locus Technologies

> > Automated Data Review Module applies validation qualifiers to data based on new detection rules

> > > After review, the data are released, and uploaded overnight to the public website

Blank Data

Method Blanks associated with N3B data (2020-2021)

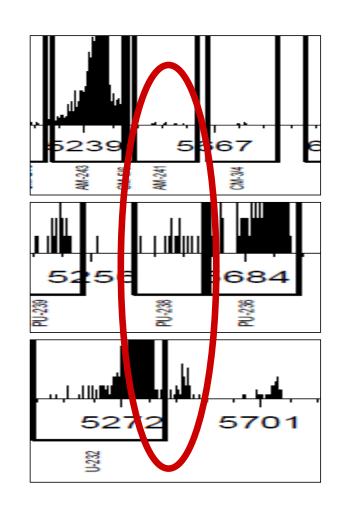
Blanks compared to MDC

Blanks compared to L _c

			Percent	
Analyte	Detected	Ν	> MDC	
Gross Alpha	0	48	0.0%	
Gross Beta	0	47	0.0%	
U-234	4	263	1.5%	
U-235	0	263	0.0%	
U-238	3	263	1.1%	
Natural Gamma	1	1854	0.1%	
Am-241	0	111	0.0%	
Pu-238	0	169	0.0%	
Pu-239	2	169	1.2%	
H-3	0	99	0.0%	
Sr-90	1	72	1.4%	
Non-Natural Gamma	0	1234	0.0%	
Grand Total	11	4592	0.2%	

			Percent			
Analyte	> L _c	Ν	> L _c			
Gross Alpha	6	48	12.5%			
Gross Beta	9	47	19.1%			
U-234	28	263	10.6%			
U-235	29	263	11.0%			
U-238	21	263	8.0%			
Natural Gamma	271	1854	14.6% 23.4%			
Am-241	26	111				
Pu-238	16	169	9.5%			
Pu-239	11	169	6.5%			
H-3	5	99	5.1%			
Sr-90	12	2 72 1				
Non-Natural Gamma	60	1234	4.9%			
Grand Total	494	4592	10.8%			

ABBAlamos


- Method blanks are assumed to be "true zero" samples
 - Assumes data reported was free of lab contamination or contribution from reagents, glassware, etc.
- Most non-natural radionuclides show near the expected 5% false positive
 - Exceptions:
 - Am-241
 - Spectral review indicates noise in this region of interest (ROI)
 - "Busy" ROI
 - Sr-90
 - Few data points
 - Nature of Gas Proportional Counting

Americium Spectrum

Plutonium Spectrum

Uranium Spectrum

- Natural radionuclides show higher propensity for false positives
 - Non-Poisson distribution
 - Natural radionuclides may be present in reagents, glassware, background environment, etc.
 - Per MARLAP, "If the analyte is a naturally occurring radionuclide that is present at varying levels in reagents, then a correction for the reagent contamination is necessary and expressions based on the Poisson model may be completely inappropriate."
 - Is another calculation for L_c more appropriate for natural radionuclides?
 - Perhaps utilize blank population?

Blank Data

Method blanks associated with N3B data (2020-2021) compared to $\rm L_{\rm c}$

			Percent		
Analyte	Detected	Ν	> L _c		
Gross Alpha	5	46	10.9%		
Gross Beta	9	45	20.0%		
U-234	2	65	3.1%		
U-235	5	65	7.7% 4.6%		
U-238	3	65			
Natural Gamma	26	135	19.3%		
Am-241	16	66	24.2%		
Pu-238	6	64	9.4%		
Pu-239	4	64	6.3%		
H-3	3	13	23.1%		
Sr-90	5	43	11.6%		
Non-Natural Gamma	16	272	5.9%		
Grand Total	100	943	10.6%		

Liquid Matrix

Solid Matrix

			Percent	
Analyte	Detected	Ν	> L _c	
Gross Alpha	1	2	50.0%	
Gross Beta	0	2	0.0%	
U-234	26	198	13.1%	
U-235	24	198	12.1%	
U-238	18	198	9.1%	
Natural Gamma	245	1719	14.3%	
Am-241	10	45	22.2%	
Pu-238	10	105	9.5%	
Pu-239	7	105	6.7%	
H-3	2	86	2.3%	
Sr-90	0 7		24.1%	
Non-Natural Gamma	47	962	4.9%	
Grand Total	397	3649	10.9%	

Blank Data Discussion

- In general, no significant difference between liquid and solid blanks
 - Exceptions:
 - Uranium Isotopes
 - More rigorous preparation, more reagents, more chance of introducing natural radionuclides
 - Tritium in liquids
 - Sr-90 in Solids
 - Small population of data, possibly just poor statistics

Data

Radionuclides Qualified UJ (detected above L_c) (Since Nov 2019)

Sr-90

Non-Natural Gamma

Blanks						
			Percent			
Analyte	> L _c	Ν	> L _c			
Gross Alpha	6	48	12.5%			
Gross Beta	9	47	19.1%			
U-234	28	263	10.6%			
U-235	29	263	11.0%			
U-238	21	263	8.0%			
Natural Gamma	271	1854	14.6%			
Am-241	26	111	23.4%			
Pu-238	16	169	9.5%			
Pu-239	11	169	6.5%			
H-3	5	99	5.1%			
Sr-90	12	72	16.7%			
Non-Natural Gamma	60	1234	4.9%			

Rlanke

			Percent		
Analyte	> L _c	Ν	> L _c		
Gross Alpha	61	208	29.3%		
Gross Beta	73	147	49.7%		
U-234	14	63	22.2%		
U-235	885	1208	73.3%		
U-238	37	85	43.5%		
Natural Gamma	872	2801	31.1%		
Am-241	85	332	25.6%		
Pu-238	71	921	7.7%		
Pu-239	105	859	12.2%		
H-3	63	683	9.2%		

55

518

318

7140

ND Sample Results

17.3%

7.3%

- Am-241 and Sr-90
 - Reported above L_c significantly greater than 5% frequency in method blanks
 - Not significantly different from percentages in non-detected samples
 - More evidence that this appears to be related to laboratory operations
 - So, What can be done?
 - Present data to contract laboratory
 - Work with laboratory to resolve potential issue with reported $\rm L_{\rm c}$
 - Validation Qualifiers significant difference between sample and blank?

Data

Samples Qualified UJ by Matrix (Since Nov 2019)

ND Liquid Sample Results

ND Solid Sample Results

			Percent				Percent
Analyte	> L _c	Ν	> L _c	Analyte	> L _c	Ν	> L _c
Gross Alpha	61	208	29.3%	Gross Alpha	0	0	0.0%
Gross Beta	73	147	49.7%	Gross Beta	0	0	0.0%
U-234	10	57	17.5%	U-234	4	6	66.7%
U-235	62	214	29.0%	U-235	823	994	82.8%
U-238	31	72	43.1%	U-238	6	13	46.2%
Natural Gamma	46	315	14.6%	Natural Gamma	1648	3467	47.5%
Am-241	64	240	26.7%	Am-241	21	92	22.8%
Pu-238	28	240	11.7%	Pu-238	43	681	6.3%
Pu-239	11	239	4.6%	Pu-239	94	620	15.2%
H-3	6	29	20.7%	H-3	57	654	8.7%
Sr-90	34	234	14.5%	Sr-90	21	84	25.0%
Non-Natural Gamma	48	947	5.1%	Non-Natural Gamma	468	6184	7.6%

Summary

- New approach to defining detected radionuclides at N3B-Los Alamos
 - 1. Aligns with industry standards and guidance documents
 - 2. Aligns radionuclide detection criteria more closely with standard chemistry methods
 - 3. Maintains historic definitions of detects for continuity and data comparison
 - 4. Offers more information to projects and decision makers
 - 5. Provides better transparency to regulators and public with regard to low-level radionuclide detection
 - 6. Path forward includes evaluation of critical level calculations used by the lab and if they are appropriate for all measurements (e.g., natural radionuclides)

Reference Documents

- ANSI/ANS-41.5-2012, Verification and Validation of Radiological Data for use in Waste Management and Environmental Remediation.
- NUREG-1576, EPA 402-B-04-001A, NTIS PB2004-105421, Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP).
- LANL Publication, LA-UR-14-27861, Analysis and Recommendations for Defining Detection Status for Radionuclides in Environmental Samples.
- Currie, LA. 1968. Limits for qualitative and quantitative determination-Application to radiochemistry. Analytical Chemistry 40:586-593.
- EPA 821-R16-006, Definition and Procedure for the Determination of the Method Detection Limit, Revision 2.

